A Novel Transmetallation of Triarylstibanes into Arylboronate: Boro-induced Ipso-deantimonation and Its Theoretical Calculation

Shuji Yasuike, ^{1,2} Kazuhide Nakata, ³ Weiwei Qin, ¹ Toshiyuki Kaji, ² and Jyoji Kurita* ¹

¹Faculty of Pharmaceutical Sciences, Hokuriku University, Kanagawa-machi, Kanazawa 920-1181

(Received August 1, 2006; CL-060876; E-mail: j-kurita@hokuriku-u.ac.jp)

Treatment of triarylstibanes with boron trichloride followed by derivatization with methanol and 1,3-propanediol afforded arylboronates in good yield with all three aryl groups on the antimony being utilized. Theoretical calculation of the reaction pathway revealed that the transformation proceeds through boro-induced ipso-deantimonation and the reactivity of Ph_3M ($M=P,\ As,\ Sb,\ and\ Bi$) should be governed by the stability of the corresponding cations Ar_2M^+ .

The utility of arylboronic acids and their esters in organic synthesis has attracted much attention in recent years, particularly through developments in the Suzuki-Miyaura coupling reaction. 1,2 Several approaches for the synthesis of arylboron derivatives have been reported.^{2–4} Among these, it is known that the propensity of arylsilanes⁵ and -stannanes⁶ to undergo ipsosubstitution allows smooth transmetallation from silicon and tin to boron by treatment with boron halides (BX₃), leading to ArBX₂. However, the transmetallation of organo-pnictogen (group 15 element: P, As, Sb, and Bi) compounds into arylboron compounds has not been reported so far. Herein, we describe the first approach of the metal exchange reaction from group 15 element to boron. In the present studies, treatment of triarylstibanes (Ar₃Sb) with boron trichloride (BCl₃) followed by derivatization with methanol and 2,2-dimethyl-1,3-propanediol afforded boronates in good yield with all three aryl groups on the antimony being utilized.

We first examined the reaction of triphenylpnictogens 1-4 with BCl₃ (3.6 equiv.), followed by quenching with methanol and derivatization with 2,2-dimethyl-1,3-propanediol. The results including reaction conditions are summarized in Table 1. Triphenylstibane 3a (M = Sb) was effectively converted to phenylboronate 7a, though 1 (M = P) and 2 (M = As) showed no ability to transform (Entries 1-3). It should be noted that all three phenyl groups on the antimony participated in the reaction of 3a with BCl₃. On the other hand, the reaction of 4 (M = Bi) with BCl₃ gave a side product Ph₂B-O-BPh₂•H₂O, which might result from the reaction of Ph₂BCl with water during work-up of the reaction mixture. This result indicates that the Ph-Bi bond in 4 would be more reactive than the Ph-Sb bond in 3a, and PhBCl₂ initially formed can react with the phenylbismuthane derivatives to form Ph₂BCl (Entries 4 and 5). Thus, only 3a was converted to dichloroborane intermediate 5, which was transformed to 7a via **6** by successive treatment with methanol and 1,3-propanediol. Also apparent was that treatment of Ph₂SbCl and PhSbCl₂ with BCl₃ (2.4 and 1.2 equiv., 0°C/2h) resulted in similar transmetallation to afford 7a in 61 and 54% yields, respectively.

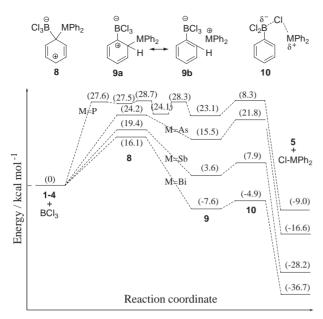
Table 1. Reaction of Ph_3M (M = P, As, Sb, and Bi) with BCl_3^a

Datas	M	Conditions	7a 0 0 88 35 44	Yield/%c
Entry	IVI	$^{\circ}\mathrm{C/h}$		Ph ₃ M:Recovery
1	P (1)	0/2	0	97
2	As (2)	0/2	0	98
3	Sb (3a)	0/2	88	0
4 ^b	Bi (4)	0/2	35	0
5 ^b	Bi (4)	-78/4	44	0

^aAll reactions were carried out using Ph₃M (1 mmol), BCl₃ (3.6 mmol), MeOH (3 mL), and 2,2-dimethyl-1,3-propanediol (10 mmol). ^bThere was a by-product [Ph₂B–O–BPh₂ \cdot H₂O (Entry 4; 54%, Entry 5; 16%)]. ^cIsolated yield.

These results revealed that the three phenyl groups on the antimony in $\bf 3a$ reacted with BCl₃ one by one via Ph₂SbCl and PhSbCl₂.

In order to evaluate the generality and applicability of this transmetallation, we attempted a reaction between BCl_3 and a variety of triarylstibanes, and the results are summarized in Table 2. Triarylstibanes 3b-3g were treated under the standard conditions employed for entry 3 in Table 1. In all cases, the corresponding arylboronates 7b-7g were formed in good yield


Table 2. Boro-induced ipso-deantimonation^a

Ar ₃ Sb	1) BCl ₃		Ar-B Me
3b-3g	2) MeOH 3) 2,2-Dimethy	7b-7g	
Entry	Substrate	Ar	Yield/%b
1	3b	4-Methoxyphenyl	57 (7b)
2	3c	4-Methylphenyl	85 (7c)
3	3d	4-Fluorophenyl	83 (7d)
4	3e	4-Chlorophenyl	92 (7e)
5	3f	2-Methylphenyl	68 (7f)
6	3 g	1-Naphthyl	80 (7g)

 $^{\rm a}All$ reactions were carried out using Ar₃Sb (1 mmol), BCl₃ (3.6 mmol), MeOH (3 mL), and 2,2-dimethyl-1,3-propanediol (10 mmol). $^{\rm b}$ Isolated yield.

²Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University, Kanagawa-machi, Kanazawa 920-1181

³Science Research Center, Hosei University, 2-17-1 Fujimi, Chiyoda-ku, Tokyo 102-8160

Figure 1. Calculated reaction coordinates for **1–4** to give **5**. Numbers in parentheses are relative energies against reactants.

with all three aryl groups on the antimony being used.⁸ Also apparent was that the position of the substituent on the aryl group was retained during the reaction. These results imply that the reaction took place through boro-induced ipso-deantimonation, which will be the first example of the ipso-attack against organostibanes by boron halide.

We next examined a theoretical calculation (RHF/Lan L2DZ level) to reveal the difference in the reactivity toward the above transmetallation (Figure 1).9 The reaction initially proceeds from an electrophilic attack of BCl₃ on the ipso-position of 1-4 to form transition state 8 whose structure is similar to those of Wheland complexes. The transformation of Ph₃M into 8 may be the rate-determining step for all substrates; activation energies are $16.1 \,\text{kcal mol}^{-1}$ for M = Bi, $19.4 \,\text{kcal mol}^{-1}$ for M = Sb, and 24.2 kcal mol⁻¹ for M = As. Then, the Ph_2M moiety rearranges on the ortho-position to give intermediate 9 which can be described as a resonance hybrid between 9a and **9b.** In the second step, one of the chloride ions moved rapidly toward M to give the product 5 and Ph₂MCl. Structures of the transition states 10 are similar to those of 9. A similar pathway for 1 (M = P) was also found at the same theoretical level, though the Wheland complex 8 was obtained as an intermediate accompanied by two transition states in front and behind. The Ph₂P moiety in 9b moved on other ortho-position in order to change the conformation of the phenyl rings, which make the chloride transfer feasible. Calculated activation energy of this reaction was 28.7 kcal mol⁻¹. All these proposed mechanisms are supported by the experimental results such as the ipso-attack and the order of reactivity. It has become apparent that the reactivity of this type of reaction is governed by the stability of the intermediate 9, or, more essentially, by the stability of the cation Ar₂M⁺. These results imply that information concerning the stability of the cations provides guidelines for the synthesis of various arylboronates.

In conclusion, we have disclosed a novel transmetallation of triarylstibanes into arylboronates based on boro-induced ipso-deantimonation and its divisional theoretical calculation of the reaction pathway was made. Synthetic application and work on the detailed reaction mechanism are in progress.

This work was supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Sciences and Technology of Japan (to J. K.); the "Academic Frontier" Project for Private Universities from the Ministry Education, Culture, Sports, Sciences and Technology of Japan (to S. Y. and T. K.); and the Specific Research Fund of Hokuriku University, which is gratefully acknowledged.

References and Notes

- a) N. Miyaura, A. Suzuki, *Chem. Rev.* 1995, 95, 2457. b) S. Kotha, K. Lahiri, D. Kashinath, *Tetrahedron* 2002, 58, 9633.
- 2 A. Suzuki, H. C. Brown, Organic Syntheses via Boranes, Aldrich Chemical Company, Inc., Milwaukee, Wisconsin, 2003, Vol. 3.
- a) D. S. Matteson, *The Chemistry of the Metal–Carbon Bond*, ed. by F. R. Hartley, S. Patai, Wiley, New York, **1987**, Vol. 4, p. 307. b) N. Miyaura, K. Maruoka, *Synthesis of Organometallic Compounds*, ed. by S. Kojima, Wiley, New York, **1997**, p. 345.
- 4 a) P.-E. Broutin, I. Čerňa, M. Campaniello, F. Leroux, F. Colobert, Org. Lett. 2004, 6, 4419. b) M. Murata, T. Oyama, S. Watanabe, Y. Masuda, J. Org. Chem. 2000, 65, 164, and reference cited therein.
- For recent examples, see: a) Z. Zhao, V. Snieckus, Org. Lett. 2005, 7, 2523. b) E. Hupe, M. I. Calaza, P. Knochel, Chem. Commun. 2002, 1390. c) M. Pottländer, N. Palmer, P. Knochel, Synlett 1996, 573.
- 6 For recent examples, see: a) G. J. P. Britovsek, J. Ugolotti, A. J. P. White, *Organometallics* 2005, 24, 1685. b) M. Schulte, F. P. Gabbaï, *Can. J. Chem.* 2002, 80, 1308. c) B. Schilling, V. Kaiser, D. E. Kaufmann, *Chem. Ber.* 1997, 130, 923.
- 7 M. Lauer, H. Böhnke, R. Grotstollen, M. Salehnia, G. Wulff, *Chem. Ber.* 1985, 118, 246.
- All reactions were carried out under argon using standard Schlenk techniques. Boron trichloride (1.0 M solution in dichloromethane, 3.6 mL, 3.6 mmol, 3.6 equiv.) was added to a stirred solution of triarylstibane 3a–3g (1.0 mmol) in dichloromethane (1 mL) at 0 °C. The mixture was stirred for 2 h at the same temperature, and then allowed to warm at room temperature. The solvent was removed under reduced pressure and the residual oil was dissolved in methanol (3 mL). After stirring the mixture for 30 min at room temperature, 2,2-dimethyl-1,3-propanediol (1.06 g, 10 mmol) was added and stirring was continued for 1 h. The solvent was removed under reduced pressure and the crude product was purified by silica-gel column chromatography using hexane/CH₂Cl₂ as eluents. 7a: 501 mg, mp 62–64.5 °C, 7b: 376 mg, mp 54–56 °C, 7c: 520 mg, mp 92–95 °C, 7d: 517 mg, mp 65–67 °C, 7e: 618 mg, mp 97–99 °C, 7f: 416 mg, oil, 7g: 576 mg, mp 68–70 °C.
- All calculations were performed at the RHF/LanL2DZ level with Gaussian 03 program: M. J. Frisch, G. W. Trucks, H. B. Schlegel. G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.